Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.633
Filtrar
1.
BMC Cancer ; 22(1): 289, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35300626

RESUMO

BACKGROUND: Pheochromocytomas (PCC) and paragangliomas (PGL) are catecholamine-producing neuroendocrine tumors. According to the World Health Organization Classification 2017, all PCC/PGL are considered to have malignant potential. There is growing evidence that PCC/PGL represent a metabolic disease that leads to aerobic glycolysis. Cellular energy metabolism involves both transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and succinate dehydrogenase (SDH) subtypes, but the association of these substances with PCC/PGL is largely unknown. METHODS: We investigated SDHB gene mutation and protein expressions for SDHB and Nrf2 in surgical specimens from 29 PCC/PGL. We also assessed preoperative maximum standard glucose uptake (SUVmax) on [18F]fluorodeoxy-glucose positron emission tomography and mRNA levels for Nrf2. RESULTS: Among 5 PCC/PGL with a PASS Score ≥ 4 or with a moderately to poorly differentiated type in the GAPP Score, 4 were metastatic and found to be SDHB mutants with homogeneous deletion of SDHB protein. SDHB mutants showed a higher expression of Nrf2 protein and a higher preoperative SUVmax than non-SDHB mutants with a PASS < 4 or a well-differentiated GAPP type. Furthermore, protein expression of Nrf2 was positively associated with preoperative SUVmax. The Nrf2 mRNA level positively correlated with malignant phenotype, higher expression for Nrf2 protein and SDHB gene mutant, but negatively correlated with expression for SDHB protein. There was also a positive correlation between Nrf2 mRNA level and SUVmax. CONCLUSION: These results suggest that activation of Nrf2 and elevated metabolism play roles in PCC/PGL with malignant potential that have SDHB gene mutation and SDHB deficiency.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Glucose/biossíntese , Fator 2 Relacionado a NF-E2/biossíntese , Paraganglioma/genética , Feocromocitoma/genética , Succinato Desidrogenase/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Adulto , Idoso , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Paraganglioma/metabolismo , Paraganglioma/patologia , Fenótipo , Feocromocitoma/metabolismo , Feocromocitoma/patologia , RNA Mensageiro/análise , Estudos Retrospectivos , Succinato Desidrogenase/deficiência
2.
Sci Rep ; 11(1): 18999, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556771

RESUMO

Growth hormone (GH) is one of the critical factors in maintaining glucose metabolism. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are key regulators of diverse metabolic processes. In this study, we investigated the link between GH and BTG2-YY1 signaling pathway in glucose metabolism. GH treatment elevated the expression of hepatic Btg2 and Yy1 in primary mouse hepatocytes and mouse livers. Glucose production in primary mouse hepatocytes and serum blood glucose levels were increased during GH exposure. Overexpression of hepatic Btg2 and Yy1 induced key gluconeogenic enzymes phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6 phosphatase (G6PC) as well as glucose production in primary mouse hepatocytes, whereas this phenomenon was markedly diminished by knockdown of Btg2 and Yy1. Here, we identified the YY1-binding site on the Pck1 and G6pc gene promoters using reporter assays and point mutation analysis. The regulation of hepatic gluconeogenic genes induced by GH treatment was clearly linked with YY1 recruitment on gluconeogenic gene promoters. Overall, this study demonstrates that BTG2 and YY1 are novel regulators of GH-dependent regulation of hepatic gluconeogenic genes and glucose production. BTG2 and YY1 may be crucial therapeutic targets to intervene in metabolic dysfunction in response to the GH-dependent signaling pathway.


Assuntos
Gluconeogênese/genética , Hormônio do Crescimento/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Glucose/biossíntese , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hormônio do Crescimento/administração & dosagem , Hepatócitos , Humanos , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Modelos Animais , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Mutação Puntual , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais/genética
3.
FASEB J ; 35(10): e21911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34551152

RESUMO

Pleiotrophin is a pleiotropic cytokine that has been demonstrated to have a critical role in regulating energy metabolism, lipid turnover and plasticity of adipose tissue. Here, we hypothesize that this cytokine can be involved in regulatory processes of glucose and lipid homeostasis in the liver during pregnancy. Using 18-days pregnant Ptn-deficient mice, we evaluated the biochemical profile (circulating variables), tissue mRNA expression (qPCR) and protein levels of key enzymes and transcription factors involved in main metabolic pathways. Ptn deletion was associated with a reduction in body weight gain, hyperglycemia and glucose intolerance. Moreover, we observed an impairment in glucose synthesis and degradation during late pregnancy in Ptn-/- mice. Hepatic lipid content was significantly lower (73.6%) in Ptn-/- mice and was associated with a clear reduction in fatty acid, triacylglycerides and cholesterol synthesis. Ptn deletion was accompanying with a diabetogenic state in the mother and a decreased expression of key proteins involved in glucose and lipid uptake and metabolism. Moreover, Ptn-/- pregnant mice have a decreased expression of transcription factors, such as PPAR-α, regulating lipid uptake and glucose and lipid utilization. Furthermore, the augmented expression and nuclear translocation of glycerol kinase, and the decrease in NUR77 protein levels in the knock-out animals can further explain the alterations observed in hepatic glucose metabolism. Our results point out for the first time that pleiotrophin is an important player in maintaining hepatic metabolic homeostasis during late gestation, and further highlighted the moonlighting role of glycerol kinase in the regulation of maternal glucose homeostasis during pregnancy.


Assuntos
Proteínas de Transporte/genética , Citocinas/deficiência , Citocinas/genética , Deleção de Genes , Intolerância à Glucose/genética , Glicerol Quinase/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glucose/biossíntese , Glucose/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Gravidez , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Aumento de Peso/genética
4.
Clin Nutr ; 40(7): 4526-4534, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34224987

RESUMO

BACKGROUND & AIMS: Clinical outcome is negatively correlated to postoperative insulin resistance and hyperglycemia. The magnitude of insulin resistance can be modulated by glucose control, preoperative nutrition, adequate pain management and minimal invasive surgery. Effects of glucose control on perioperative glucose kinetics in liver surgery is less studied. METHODS: 18 patients scheduled for open hepatectomy were studied per protocol in this prospective, randomized study. In the treatment group (n = 9), insulin was administered intravenously to keep arterial blood glucose between 6 and 8 mmol/l during surgery. The control group (n = 9) received insulin if blood glucose >11.5 mmol/l. Insulin sensitivity was measured by an insulin clamp on the day before surgery and immediately postoperatively. Glucose kinetics were assessed during the clamp and surgery. RESULTS: Mean intraoperative glucose was 7.0 mM (SD 0.7) vs 9.1 mM (SD 1.9) in the insulin and control group respectively (p < 0.001; ANOVA). Insulin sensitivity decreased in both groups but significantly (p = 0.03, ANOVA) more in the control group (M value: 4.6 (4.4-6.8) to 2.1 (1.2-2.6) and 4.6 (4.1-5.0) to 0.6 (0.1-1.8) mg/kg/min in the treatment and control group respectively). Endogenous glucose production (EGP) increased and glucose disposal (WGD) decreased significantly between the pre- and post-operative clamps in both groups, with no significant difference between the groups. Intraoperative kinetics demonstrated that glucose control decreased EGP (p = 0.02) while WGD remained unchanged (p = 0.67). CONCLUSION: Glucose control reduces postoperative insulin resistance in liver surgery. EGP increases and WGD is diminished immediately postoperatively. Insulin seems to modulate both reactions, but mostly the WGD is affected. Intraoperative EGP decreased while WGD remained unaltered. REGISTRATION NUMBER OF CLINICAL TRIAL: ANZCTR 12614000278639.


Assuntos
Controle Glicêmico/métodos , Hepatectomia/efeitos adversos , Hiperglicemia/prevenção & controle , Assistência Perioperatória/métodos , Complicações Pós-Operatórias/prevenção & controle , Idoso , Glicemia/efeitos dos fármacos , Feminino , Glucose/biossíntese , Técnica Clamp de Glucose , Humanos , Hiperglicemia/etiologia , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Resistência à Insulina , Cinética , Fígado/cirurgia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Período Pós-Operatório , Estudos Prospectivos , Resultado do Tratamento
5.
Mol Metab ; 53: 101269, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116232

RESUMO

OBJECTIVE: Throughout the last decade, interest has intensified in intermittent fasting, ketogenic diets, and exogenous ketone therapies as prospective health-promoting, therapeutic, and performance-enhancing agents. However, the regulatory roles of ketogenesis and ketone metabolism on liver homeostasis remain unclear. Therefore, we sought to develop a better understanding of the metabolic consequences of hepatic ketone body metabolism by focusing on the redox-dependent interconversion of acetoacetate (AcAc) and D-ß-hydroxybutyrate (D-ßOHB). METHODS: Using targeted and isotope tracing high-resolution liquid chromatography-mass spectrometry, dual stable isotope tracer nuclear magnetic resonance spectroscopy-based metabolic flux modeling, and complementary physiological approaches in novel cell type-specific knockout mice, we quantified the roles of hepatocyte D-ß-hydroxybutyrate dehydrogenase (BDH1), a mitochondrial enzyme required for NAD+/NADH-dependent oxidation/reduction of ketone bodies. RESULTS: Exogenously administered AcAc is reduced to D-ßOHB, which increases hepatic NAD+/NADH ratio and reflects hepatic BDH1 activity. Livers of hepatocyte-specific BDH1-deficient mice did not produce D-ßOHB, but owing to extrahepatic BDH1, these mice nonetheless remained capable of AcAc/D-ßOHB interconversion. Compared to littermate controls, hepatocyte-specific BDH1 deficient mice exhibited diminished liver tricarboxylic acid (TCA) cycle flux and impaired gluconeogenesis, but normal hepatic energy charge overall. Glycemic recovery after acute insulin challenge was impaired in knockout mice, but they were not more susceptible to starvation-induced hypoglycemia. CONCLUSIONS: Ketone bodies influence liver homeostasis. While liver BDH1 is not required for whole body equilibration of AcAc and D-ßOHB, loss of the ability to interconvert these ketone bodies in hepatocytes results in impaired TCA cycle flux and glucose production. Therefore, through oxidation/reduction of ketone bodies, BDH1 is a significant contributor to hepatic mitochondrial redox, liver physiology, and organism-wide ketone body homeostasis.


Assuntos
Glucose/biossíntese , Hepatócitos/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Cetonas/metabolismo , Animais , Ciclo do Ácido Cítrico , Feminino , Hidroxibutirato Desidrogenase/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Nutrients ; 13(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069950

RESUMO

Insulin resistance is a key etiological factor in promoting not only type 2 diabetes mellitus but also cardiovascular disease (CVD). Exercise is a first-line therapy for combating chronic disease by improving insulin action through, in part, reducing hepatic glucose production and lipolysis as well as increasing skeletal muscle glucose uptake and vasodilation. Just like a pharmaceutical agent, exercise can be viewed as a "drug" such that identifying an optimal prescription requires a determination of mode, intensity, and timing as well as consideration of how much exercise is done relative to sitting for prolonged periods (e.g., desk job at work). Furthermore, proximal nutrition (nutrient timing, carbohydrate intake, etc.), sleep (or lack thereof), as well as alcohol consumption are likely important considerations for enhancing adaptations to exercise. Thus, identifying the maximal exercise "drug" for reducing insulin resistance will require a multi-health behavior approach to optimize type 2 diabetes and CVD care.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Ingestão de Energia/fisiologia , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Sono/fisiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Metabolismo dos Carboidratos , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Metabolismo Energético , Glucose/biossíntese , Humanos , Lipólise , Fígado/metabolismo , Músculo Esquelético/metabolismo , Vasodilatação/fisiologia
7.
Open Biol ; 11(6): 200384, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34129780

RESUMO

Toxoplasma gondii is a ubiquitous pathogen infecting one-third of the global population. A significant fraction of toxoplasmosis cases is caused by reactivation of existing chronic infections. The encysted bradyzoites during chronic infection accumulate high levels of amylopectin that is barely present in fast-replicating tachyzoites. However, the physiological significance of amylopectin is not fully understood. Here, we identified a starch synthase (SS) that is required for amylopectin synthesis in T. gondii. Genetic ablation of SS abolished amylopectin production, reduced tachyzoite proliferation, and impaired the recrudescence of bradyzoites to tachyzoites. Disruption of the parasite Ca2+-dependent protein kinase 2 (CDPK2) was previously shown to cause massive amylopectin accumulation and bradyzoite death. Therefore, the Δcdpk2 mutant is thought to be a vaccine candidate. Notably, deleting SS in a Δcdpk2 mutant completely abolished starch accrual and restored cyst formation as well as virulence in mice. Together these results suggest that regulated amylopectin production is critical for the optimal growth, development and virulence of Toxoplasma. Not least, our data underscore a potential drawback of the Δcdpk2 mutant as a vaccine candidate as it may regain full virulence by mutating amylopectin synthesis genes like SS.


Assuntos
Amilopectina/biossíntese , Vacinas Protozoárias , Toxoplasma/imunologia , Toxoplasma/metabolismo , Toxoplasmose/imunologia , Desenvolvimento de Vacinas , Animais , Antígenos de Protozoários/imunologia , Linhagem Celular , Glucose/biossíntese , Humanos , Camundongos , Mutação , Filogenia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Sintase do Amido/genética , Sintase do Amido/metabolismo , Toxoplasma/classificação , Toxoplasma/patogenicidade , Toxoplasmose/prevenção & controle , Virulência
8.
Am J Physiol Endocrinol Metab ; 321(1): E156-E163, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34056920

RESUMO

The brain has been traditionally thought to be insensitive to insulin, primarily because insulin does not stimulate glucose uptake/metabolism in the brain (as it does in classic insulin-sensitive tissues such as muscle, liver, and fat). However, over the past 20 years, research in this field has identified unique actions of insulin in the brain. There is accumulating evidence that insulin crosses into the brain and regulates central nervous system functions such as feeding, depression, and cognitive behavior. In addition, insulin acts in the brain to regulate systemic functions such as hepatic glucose production, lipolysis, lipogenesis, reproductive competence, and the sympathoadrenal response to hypoglycemia. Decrements in brain insulin action (or brain insulin resistance) can be observed in obesity, type 2 diabetes (T2DM), aging, and Alzheimer's disease (AD), indicating a possible link between metabolic and cognitive health. Here, we describe recent findings on the pleiotropic actions of insulin in the brain and highlight the precise sites, specific neuronal population, and roles for supportive astrocytic cells through which insulin acts in the brain. In addition, we also discuss how boosting brain insulin action could be a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases such as AD and T2DM. Overall, this perspective article serves to highlight some of these key scientific findings, identify unresolved issues, and indicate future directions of research in this field that would serve to improve the lives of people with metabolic and cognitive dysfunctions.


Assuntos
Encéfalo/fisiologia , Insulina/fisiologia , Doença de Alzheimer , Ansiedade , Barreira Hematoencefálica/metabolismo , Peso Corporal , Encéfalo/efeitos dos fármacos , Colesterol/biossíntese , Cognição , Depressão , Ingestão de Alimentos , Glucose/biossíntese , Humanos , Insulina/metabolismo , Insulina/farmacologia , Metabolismo dos Lipídeos/fisiologia
9.
Molecules ; 26(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669133

RESUMO

This study investigated the effects of Tiliacora triandra (Colebr.) Diels aqueous extract (TTE) on hepatic glucose production in hepatocellular carcinoma (HepG2) cells and type 2 diabetic (T2DM) conditions. HepG2 cells were pretreated with TTE and its major constituents found in TTE, epicatechin (EC) and quercetin (QC). The hepatic glucose production was determined. The in vitro data were confirmed in T2DM rats, which were supplemented daily with 1000 mg/kg body weight (BW) TTE, 30 mg/kg BW metformin or TTE combined with metformin for 12 weeks. Results demonstrate that TTE induced copper-zinc superoxide dismutase, glutathione peroxidase and catalase genes, similarly to EC and QC. TTE decreased hepatic glucose production by downregulating phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and increasing protein kinase B and AMP-activated protein kinase phosphorylation in HepG2 cells. These results correlated with the antihyperglycemic, antitriglyceridemic, anti-insulin resistance, and antioxidant activities of TTE in T2DM rats, similar to the metformin and combination treatments. Consistently, impairment of hepatic gluconeogenesis in T2DM rats was restored after single and combined treatments by reducing PEPCK and G6Pase genes. Collectively, TTE could potentially be developed as a nutraceutical product to prevent glucose overproduction in patients with obesity, insulin resistance, and diabetes who are being treated with antidiabetic drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Menispermaceae/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Glucose/biossíntese , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Injeções Intraperitoneais , Masculino , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/administração & dosagem , Células Tumorais Cultivadas , Água/química
10.
Int J Biol Macromol ; 173: 136-145, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482202

RESUMO

Herbivores gastrointestinal microbiota is of tremendous interest for mining novel lignocellulosic enzymes for bioprocessing. We previously reported a set of potential carbohydrate-active enzymes from the metatranscriptome of the Hu sheep rumen microbiome. In this study, we isolated and heterologously expressed two novel glucanase genes, Cel5A-h38 and Cel5A-h49, finding that both recombinant enzymes showed the optimum temperatures of 50 °C. Substrate-specificity determination revealed that Cel5A-h38 was exclusively active in the presence of mixed-linked glucans, such as barley ß-glucan and Icelandic moss lichenan, whereas Cel5A-h49 (EC 3.2.1.4) exhibited a wider substrate spectrum. Surprisingly, Cel5A-h38 initially released only cellotriose from lichenan and further converted it into an equivalent amount of glucose and cellobiose, suggesting a dual-function as both endo-ß-1,3-1,4-glucanase (EC 3.2.1.73) and exo-cellobiohydrolase (EC 3.2.1.91). Additionally, we performed enzymatic hydrolysis of sheepgrass (Leymus chinensis) and rice (Orysa sativa) straw using Cel5A-h38, revealing liberation of 1.91 ± 0.30 mmol/mL and 2.03 ± 0.09 mmol/mL reducing sugars, respectively, including high concentrations of glucose and cellobiose. These results provided new insights into glucanase activity and lay a foundation for bioconversion of lignocellulosic biomass.


Assuntos
Proteínas de Bactérias/metabolismo , Celobiose/biossíntese , Celulose 1,4-beta-Celobiosidase/metabolismo , Endo-1,3(4)-beta-Glucanase/metabolismo , Glucose/biossíntese , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucanos/metabolismo , Hidrólise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rúmen/microbiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ovinos/microbiologia , Especificidade por Substrato , Trioses/metabolismo , beta-Glucanas/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431680

RESUMO

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.


Assuntos
Celulose/biossíntese , Engenharia Química/métodos , Cloroplastos/efeitos da radiação , Glucose/biossíntese , Impressão Tridimensional/instrumentação , Celulose/química , Cloroplastos/química , Cloroplastos/fisiologia , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Glucose/química , Humanos , Isocianatos/química , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Robótica/métodos , Spinacia oleracea/química , Spinacia oleracea/efeitos da radiação
12.
Nutrients ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010994

RESUMO

BACKGROUND/AIM: Given their widespread use and their notorious effects on the lining of gut cells, including the enteroendocrine cells, we explored if chronic exposure to non-steroidal anti-inflammatory drugs (NSAIDs) affects metabolic balance in a mouse model of NSAID-induced enteropathy. METHOD: We administered variable NSAIDs to C57Blk/6J mice through intragastric gavage and measured their energy balance, glucose hemostasis, and GLP-1 levels. We treated them with Exendin-9 and Exendin-4 and ran a euglycemic-hyperinsulinemic clamp. RESULTS: Chronic administration of multiple NSAIDs to C57Blk/6J mice induces ileal ulcerations and weight loss in animals consuming a high-fat diet. Despite losing weight, NSAID-treated mice exhibit no improvement in their glucose tolerance. Furthermore, glucose-stimulated (glucagon-like peptide -1) GLP-1 is significantly attenuated in the NSAID-treated groups. In addition, Exendin-9-a GLP-1 receptor antagonist-worsens glucose tolerance in the control group but not in the NSAID-treated group. Finally, the hyper-insulinemic euglycemic clamp study shows that endogenous glucose production, total glucose disposal, and their associated insulin levels were similar among an ibuprofen-treated group and its control. Exendin-4, a GLP-1 receptor agonist, reduces insulin levels in the ibuprofen group compared to their controls for the same glucose exchange rates. CONCLUSIONS: Chronic NSAID use can induce small intestinal ulcerations, which can affect intestinal GLP-1 production, hepatic insulin sensitivity, and consequently, hepatic glucose production.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/biossíntese , Enteropatias/induzido quimicamente , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Técnica Clamp de Glucose , Intolerância à Glucose/induzido quimicamente , Ibuprofeno/efeitos adversos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
J Diabetes Investig ; 12(1): 35-47, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32515547

RESUMO

AIMS/INTRODUCTION: Sodium-glucose cotransporter 2 inhibitor (SGLT2i) lowers blood glucose and causes a whole-body energy deficit by boosting renal glucose excretion, thus affecting glucose and energy metabolism. This energy deficit not only decreases bodyweight, but also increases food intake. This food intake increase offsets the SGLT2i-induced bodyweight decrease, but the effect of the food intake increase on the SGLT2i regulation of glucose metabolism remains unclear. MATERIALS AND METHODS: We administered SGLT2i (luseogliflozin) for 4 weeks to hepatic gluconeogenic enzyme gene G6pc reporter mice with/without obesity, which were either fed freely or under a 3-hourly dietary regimen. The effect of feeding condition on the gluconeogenic response to SGLT2i was evaluated by plasma Gaussia luciferase activity, an index of the hepatic gluconeogenic response, in G6pc reporter mice. Energy expenditure was measured by indirect calorimetry. RESULTS: In the lean mice under controlled feeding, SGLT2i decreased bodyweight and plasma glucose, and increased the hepatic gluconeogenic response while decreasing blood insulin. SGLT2i also increased oxygen consumption under controlled feeding. However, free feeding negated all of these effects of SGLT2i. In the obese mice, SGLT2i decreased bodyweight, blood glucose and plasma insulin, ameliorated the upregulated hepatic gluconeogenic response, and increased oxygen consumption under controlled feeding. Under free feeding, although blood glucose was decreased and plasma insulin tended to decrease, the effects of SGLT2i - decreased bodyweight, alleviation of the hepatic gluconeogenic response and increased oxygen consumption - were absent. CONCLUSIONS: Food intake management is crucial for SGLT2i to affect glucose and energy metabolism during type 2 diabetes treatment.


Assuntos
Dieta , Metabolismo Energético , Gluconeogênese , Glucose/biossíntese , Obesidade/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Magreza/tratamento farmacológico , Animais , Diabetes Mellitus Tipo 2/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Magreza/metabolismo , Magreza/patologia
14.
Adv Exp Med Biol ; 1265: 71-95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32761571

RESUMO

The kidneys are developed from the intermediate mesoderm of the embryo. They are important for osmoregulation, regulation of acid-base balance, reabsorption of nutrients, and excretion of metabolites. In fish, the kidneys also serve as a hematopoietic, lymphoid and endocrine organ for the generation of red blood cells, the development of lymphocytes, and the production of hormones (e.g., glucocorticoids, catecholamines, and thyroid hormones). In humans and all animals, kidneys play a vital role in the metabolism and reabsorption of amino acids (AAs) and glucose. Specifically, this organ contributes to glucose synthesis from AAs, lactate and pyruvate via the gluconeogenesis pathway; regulates acid-base balance via inter-organ metabolism of glutamine; and synthesizes arginine, tyrosine, and glycine, respectively, from citrulline, phenylalanine, and 4-hydroxyproline. In mammals and birds, kidneys participate in creatine synthesis. Renal dysfunction adversely alters the concentrations of AAs in blood, while promoting muscle protein breakdown, inflammation, mitochondrial abnormalities, defects in the immune response, and cardiovascular diseases. Moderation of dietary AA intake has a protective and therapeutic effect on chronic kidney disease. Understanding the functions and metabolism of AAs in kidneys is essential for maintaining whole-body homeostasis, improving health and well-being, and preventing or treating renal metabolic diseases in humans and farm animals (including swine, poultry, ruminants, fish and shrimp).


Assuntos
Aminoácidos/metabolismo , Rim/metabolismo , Rim/fisiologia , Animais , Gluconeogênese , Glucose/biossíntese , Humanos
15.
J Nutr ; 150(9): 2239-2241, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652033

RESUMO

A gluconeogenic precursor is a biochemical compound acted on by a gluconeogenic pathway enabling the net synthesis of glucose. Recognized gluconeogenic precursors in fasting placental mammals include glycerol, lactate/pyruvate, certain amino acids, and odd-chain length fatty acids. Each of these precursors is capable of contributing net amounts of carbon to glucose synthesis via the tricarboxylic acid cycle (TCA cycle) because they are anaplerotic, that is, they are able to increase the pools of TCA cycle intermediates by the contribution of more carbon than is lost via carbon dioxide. The net synthesis of glucose from even-chain length fatty acids (ECFAs) in fasting placental mammals, via the TCA cycle alone, is not possible because equal amounts of carbon are lost via carbon dioxide as is contributed from fatty acid oxidation via acetyl-CoA. Therefore, ECFAs do not meet the criteria to be recognized as a gluconeogenic precursor via the TCA cycle alone. ECFAs are gluconeogenic precursors in organisms with a functioning glyoxylate cycle, which enables the net contribution of carbon to the intermediates of the TCA cycle from ECFAs and the net synthesis of glucose. The net conversion of ECFAs to glucose in fasting placental mammals via C3 metabolism of acetone may be a competent though inefficient metabolic path by which ECFA could be considered a gluconeogenic precursor. Defining a substrate as a gluconeogenic precursor requires careful articulation of the definition, organism, and physiologic conditions under consideration.


Assuntos
Ácidos Graxos/metabolismo , Gluconeogênese/fisiologia , Glucose/biossíntese , Acetilcoenzima A/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Humanos , Oxirredução
16.
J Nutr ; 150(9): 2235-2238, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652038

RESUMO

It is widely accepted that the tricarboxylic acid (TCA) cycle is a critical partner for gluconeogenesis (GNG) in hepatocytes. Although researchers in the 1950s showed, using radiolabeled long-chain fatty acids, that acetate derived from fatty acid ß-oxidation contributes carbon to glucose, fatty acids are not included on lists of gluconeogenic precursors in many textbooks of biochemistry and nutritional biochemistry. Here, by following the flow of carbon atoms through the mitochondrial TCA cycle and into cytosolic GNG, it is shown that carbons in acetyl-CoA derived from fatty acid ß-oxidation will be found in glucose. Specifically, it is evident that, after the condensation of acetyl-CoA and oxaloacetate (OAA) to make citrate at the start of the TCA cycle, the 2 carbons lost from the cycle as carbon dioxide come from OAA, not acetyl-CoA. Carbons from acetyl-CoA are retained as the cycle progresses toward malate, and when malate exits the mitochondrion for GNG, carbons that originated in acetyl-CoA and OAA are found to contribute equally to glucose. With influx of other critical precursors into the TCA cycle and efflux of malate into the cytosol for GNG, the TCA cycle is in balance. During fasting-induced GNG, there is a net gain of glucose in glucogenic cells; however, the fact that there is no net gain in the TCA cycle is irrelevant as far as precursors are concerned. Given the physiological importance of fat as a source of reserve energy, and knowing that some cell types rely on glucose as their primary supplier of energy, a role for fatty acids in glucose production aligns both with intuition and with evidence provided by a careful look at the biochemistry and older isotope studies. Hopefully, subsequent editions of textbooks will list fatty acids among the gluconeogenic precursors.


Assuntos
Ácidos Graxos/metabolismo , Gluconeogênese/fisiologia , Glucose/biossíntese , Carbono/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Ácidos Graxos/química , Humanos
17.
Diabetologia ; 63(10): 2194-2204, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32728891

RESUMO

AIMS/HYPOTHESIS: Metformin is the only approved oral agent for youth with type 2 diabetes but its mechanism of action remains controversial. Recent data in adults suggest a primary role for the enteroinsular pathway, but there are no data in youth, in whom metformin efficacy is only ~50%. Our objectives were to compare incretin concentrations and rates of glucose production and gluconeogenesis in youth with type 2 diabetes before and after short-term metformin therapy compared with peers with normal glucose tolerance (NGT). METHODS: This is a case-control observational study in youth with type 2 diabetes who were not on metformin (n = 18) compared with youth with NGT (n = 10) who were evaluated with a 2 day protocol. A 75 g OGTT was administered to measure intact glucagon-like 1 peptide (iGLP-1), gastric inhibitory polypeptide (GIP) and peptide YY (PYY). Insulinogenic index (IGI) and whole-body insulin sensitivity were calculated using glucose and insulin levels from the OGTT. Basal rates of gluconeogenesis (2H2O), glucose production ([6,6-2H2]glucose) and whole-body lipolysis ([2H5]glycerol) were measured after an overnight fast on study day 2. Youth with type 2 diabetes (n = 9) were subsequently evaluated with an identical 2 day protocol after 3 months on the metformin study. RESULTS: Compared with individuals with NGT, those with type 2 diabetes had higher fasting (7.8 ± 2.5 vs 5.1 ± 0.3 mmol/l, mean ± SD p = 0.002) and 2 h glucose concentrations (13.8 ± 4.5 vs 5.9 ± 0.9 mmol/l, p = 0.001), higher rates of absolute gluconeogenesis (10.0 ± 1.7 vs 7.2 ± 1.1 µmol [kg fat-free mass (FFM)]-1 min-1, p < 0.001) and whole-body lipolysis (5.2 ± 0.9 vs 4.0 ± 1.4 µmol kgFFM-1 min-1, p < 0.01), but lower fasting iGLP-1 concentrations (0.5 ± 0.5 vs 1.3 ± 0.7 pmol/l, p < 0.01). Metformin decreased 2 h glucose (pre metformin 11.4 ± 2.8 vs post metformin 9.9 ± 1.9 mmol/l, p = 0.04) and was associated with ~20-50% increase in IGI (median [25th-75th percentile] pre 1.39 [0.89-1.47] vs post 1.43 [0.88-2.70], p = 0.04), fasting iGLP-1 (pre 0.3 ± 0.2 vs post 1.0 ± 0.7 pmol/l, p = 0.02), 2 h iGLP (pre 0.4 ± 0.2 vs post 1.2 ± 0.9 pmol/l, p = 0.06), fasting PYY (pre 6.3 ± 2.2 vs post 10.5 ± 4.3 pmol/l, p < 0.01) and 2 h PYY (pre 6.6 ± 2.9 vs post 9.0 ± 4.0 pmol/l, p < 0.01). There was no change in BMI, insulin sensitivity or GIP concentrations pre vs post metformin. There were no differences pre vs post metformin in rates of glucose production (15.0 ± 3.9 vs 14.9 ± 2.2 µmol kgFFM-1 min-1, p = 0.84), absolute gluconeogenesis (9.9 ± 1.8 vs 9.7 ± 1.7 µmol kgFFM-1 min-1, p = 0.76) or whole-body lipolysis (5.0 ± 0.7 vs 5.3 ± 1.3 µmol kgFFM-1 min-1, p = 0.20). Post metformin iGLP-1 and PYY concentrations in youth with type 2 diabetes were comparable to levels in youth with NGT. CONCLUSIONS/INTERPRETATION: Overall, the improved postprandial blood glucose levels and increase in incretins observed in the absence of changes in insulin sensitivity and gluconeogenesis, support an enteroinsular mechanistic pathway in youth with type 2 diabetes treated with short-term metformin.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Gluconeogênese , Hipoglicemiantes/uso terapêutico , Incretinas/metabolismo , Metformina/uso terapêutico , Adolescente , Estudos de Casos e Controles , Criança , Óxido de Deutério , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/biossíntese , Humanos , Secreção de Insulina , Masculino , Peptídeo YY/metabolismo
18.
Am J Physiol Endocrinol Metab ; 319(2): E410-E426, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663101

RESUMO

Diabetes is a chronic, progressive disease that calls for longitudinal data and analysis. We introduce a longitudinal mathematical model that is capable of representing the metabolic state of an individual at any point in time during their progression from normal glucose tolerance to type 2 diabetes (T2D) over a period of years. As an application of the model, we account for the diversity of pathways typically followed, focusing on two extreme alternatives, one that goes through impaired fasting glucose (IFG) first and one that goes through impaired glucose tolerance (IGT) first. These two pathways are widely recognized to stem from distinct metabolic abnormalities in hepatic glucose production and peripheral glucose uptake, respectively. We confirm this but go beyond to show that IFG and IGT lie on a continuum ranging from high hepatic insulin resistance and low peripheral insulin resistance to low hepatic resistance and high peripheral resistance. We show that IFG generally incurs IGT and IGT generally incurs IFG on the way to T2D, highlighting the difference between innate and acquired defects and the need to assess patients early to determine their underlying primary impairment and appropriately target therapy. We also consider other mechanisms, showing that IFG can result from impaired insulin secretion, that non-insulin-dependent glucose uptake can also mediate or interact with these pathways, and that impaired incretin signaling can accelerate T2D progression. We consider whether hyperinsulinemia can cause insulin resistance in addition to being a response to it and suggest that this is a minor effect.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Glicemia/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Progressão da Doença , Jejum , Glucose/biossíntese , Intolerância à Glucose , Teste de Tolerância a Glucose , Humanos , Hiperinsulinismo/fisiopatologia , Incretinas/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Fígado/metabolismo , Modelos Teóricos , Transdução de Sinais/fisiologia
19.
J Microbiol ; 58(9): 725-733, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32583284

RESUMO

Phosphate sugar isomerases, catalyzing the isomerization between ketopentose/ketohexose phosphate and aldopentose/aldohexose phosphate, play an important role in microbial sugar metabolism. They are present in a wide range of microorganisms. They have attracted increasing research interest because of their broad substrate specificity and great potential in the enzymatic production of various rare sugars. Here, the enzymatic properties of various phosphate sugar isomerases are reviewed in terms of their substrate specificities and their applications in the production of valuable rare sugars because of their functions such as low-calorie sweeteners, bulking agents, and pharmaceutical precursor. Specifically, we focused on the industrial applications of D-ribose-5-phosphate isomerase and D-mannose-6-phosphate isomerase to produce D-allose and L-ribose, respectively.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Bactérias/metabolismo , Glucose/biossíntese , Manose-6-Fosfato Isomerase/metabolismo , Ribose/biossíntese , Hexoses/metabolismo , Pentoses/metabolismo , Especificidade por Substrato , Edulcorantes/química
20.
Hepatology ; 72(3): 857-872, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32498134

RESUMO

BACKGROUND AND AIMS: Obesity-induced pathogenesis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is associated with increased de novo lipogenesis (DNL) and hepatic glucose production (HGP) that is due to excess fatty acids. Acyl-coenzyme A (CoA) thioesterase (Acot) family members control the cellular utilization of fatty acids by hydrolyzing (deactivating) acyl-CoA into nonesterified fatty acids and CoASH. APPROACH AND RESULTS: Using Caenorhabditis elegans, we identified Acot9 as the strongest regulator of lipid accumulation within the Acot family. Indicative of a maladaptive function, hepatic Acot9 expression was higher in patients with obesity who had NAFLD and NASH compared with healthy controls with obesity. In the setting of excessive nutrition, global ablation of Acot9 protected mice against increases in weight gain, HGP, steatosis, and steatohepatitis. Supportive of a hepatic function, the liver-specific deletion of Acot9 inhibited HGP and steatosis in mice without affecting diet-induced weight gain. By contrast, the rescue of Acot9 expression only in the livers of Acot9 knockout mice was sufficient to promote HGP and steatosis. Mechanistically, hepatic Acot9 localized to the inner mitochondrial membrane, where it deactivated short-chain but not long-chain fatty acyl-CoA. This unique localization and activity of Acot9 directed acetyl-CoA away from protein lysine acetylation and toward the citric acid (TCA) cycle. Acot9-mediated exacerbation of triglyceride and glucose biosynthesis was attributable at least in part to increased TCA cycle activity, which provided substrates for HGP and DNL. ß-oxidation and ketone body production, which depend on long-chain fatty acyl-CoA, were not regulated by Acot9. CONCLUSIONS: Taken together, our findings indicate that Acot9 channels hepatic acyl-CoAs toward increased HGP and DNL under the pathophysiology of obesity. Therefore, Acot9 represents a target for the management of NAFLD.


Assuntos
Acil Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Lipogênese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Tioléster Hidrolases , Animais , Caenorhabditis elegans , Descoberta de Drogas , Deleção de Genes , Glucose/biossíntese , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...